
319

Chapter 10:	 Encapsulation and Root
Mirroring
by Dr. Albrecht Scriba

Introduction and Overview10.1	
Within the previous chapters of this book, we always created volumes based on freshly

initialized disks. So from the application’s point of view, the content of the volumes was
uninitialized. Of course, there was some kind of data on the disks (any sequence of bits),
but we didn’t bother to restore them to an application usable state. Instead we created file
systems after volume creation, initialized a starter database, and so on.

Now we turn to a somewhat different procedure to create volumes on already existing
application data, so we can move raw device control to VxVM in order to apply all the nice
features of an advanced volume management: adding redundancy, resizing, relayouting for
performance reasons, online migration to another storage array, etc.

This procedure is called encapsulation, and you can hear a lot of strange myths about
it. But the basic steps of this procedure are surprisingly simple, as we will see in this
introductory chapter. Only two details need further investigation. They are presented in the
"Technical Deep Dive" section: subdisk alignment and the infamous "B0" Ghost subdisk (see
page 330) that often appears on encapsulated disks.

V. Herminghaus and A. Sriba, Storage Management in Data Centers,

DOI: 10.1007/978-3-540-85023-6_10, © Springer-Verlag Berlin Heidelberg 2009

320

Encapsulation and Root Mirroring

Easy
Sailing

Vx

So why did we call the basic steps surprisingly simple? Because all kinds of volume
management have one thing in common, as shown in chapter 1: They all store application
data in extents, i.e. in an ordered list of contiguous disk regions (e.g. logical partitions of
AIX). Encapsulation basically places VxVM subdisks (just another kind of extent) exactly
over the preexisting extents containing application data and orders these subdisks in
exactly the same manner within a VxVM plex, as they were ordered in the former volume
management. Adding a volume layer to this plex leads to an application driver showing
the same data as before.

The very simplest way to store application data is a Solaris partition, so we only have
one extent on one disk. This chapter focuses on the procedure of encapsulating a Solaris
partition, although it might be adapted to more complex data structures of other volume
managers.

Private regionPublic region

Cylinder 0-99:
Slice 0 and Subdisk edg01-01

Cylinder 100-199:
Slice 1 and Subdisk edg01-02

Cylinder
200

vol0 vol1

Encapsulation technique (slightly simplified)Figure 10-1:

321

The Secrets of Encapsulation

Just to clear up whatever misunderstandings may remain: When an application (usu-
ally the file system) does I/O to a device there is always some kind of mechanism that maps
the block number or extent specification to the physical layer of the device. For a Solaris
partition, this function is almost trivial: it simply adds the offset of the partition start to
the block number to get to the physical block. It needs meta information from the VTOC
in order to do that. If we create a virtual object in VxVM that translates the logical block
numbers of the virtual object to the same physical block numbers, then we can access the
data by either of the two means: via partitioning and via VxVM. We could even add a third
volume management product and add meta info for that, too, like Sun LVM (aka SDS). Of
course we must not access the data in an uncoordinated way or risk losing data integrity.
But again: In principle, all you need is meta data for the current device driver that points
to the same extents (or maps the extents in the same way) as the original data and we can
encapsulate whatever we want.

Placing a subdisk over a Solaris partition requires, as we already know, two preced-
ing steps. We must prepare the disk for VxVM use (creating private and public region and
initializing the former with a basic data structure), and we must build a disk group out of
this disk or add the disk to an existing disk group. In other words: You cannot define VxVM
objects without a disk group containing at least one active configuration copy within the
private region.

Here is a commented list of actions that need to be performed in order to add a VxVM
volume interface to already existing application data. Currently, we will not discuss the
individual command lines. This is left to the "Technical Deep Dive" section of this chap-
ter. Consider the following list as a look behind the scenes. You do not necessarily have
to understand all the steps if you just want to encapsulate a few disks. There is a simple
command for that, which is discussed right after this list. But you may eventually require
this look behind the scenes if you want to really understand encapsulation, if you run into
problems with encapsulating, or if you wish to encapsulate in a non-standard way (e.g. not
all of the partitions of a disk).

The Secrets of 10.2	 Encapsulation

1.	 In addition to the existing partitions (the ones to be encapsulated) we create the
well known VxVM partitions. For the cdsdisk layout a slice with tag 15 is put over
the whole disk . For the sliced layout, a slice with tag 15 is put over an unused disk
cylinder anywhere on the disk for the private region and a slice bearing tag 14 over
the remainder of or over the whole disk (see below) as the public region. So it is
obvious, that you cannot encapsulate a disk without some free space to put the pri-
vate region on. Furthermore, you need one (for cdsdisk) or two (for sliced) unused
partitions in order to keep all applications running during these preparatory steps.
Otherwise you would need to stop at least some applications using some partitions
on that disk, to remember offset and length of these partitions and to remove them.
Finally, a cdsdisk layout cannot be used under the already mentioned restrictions:
disks not supporting SCSI mode sense (such as IDE) and OS or EFI disks. In addition,
since the offset of the private region of a CDS disk must be 256 sectors, we cannot
encapsulate a partition located in that region.

322

Encapsulation and Root Mirroring

2.	 We initialize the private region with the appropriate basic data set depending on
the VxVM partition layout we created in step 1 (cdsdisk or sliced). Steps 1 and 2
resemble the usual procedure of disk initialization using vxdisksetup.

3.	 We create a new disk group out of this initialized disk or add the disk to an existing
disk group. Note that there is no difference to the standard way of creating or adding
to disk groups.

4.	 We define subdisks with the corresponding offset and length over the partitions we
want to encapsulate, associate them with plexes, create volumes for the plexes and
attach the plexes into the volumes, then start the volumes in order to enable I/O. Now
we have an active volume driver for each encapsulated partition. Since vxassist,
the easy to handle default top-down tool for volume creation, is unable to specify
the exact offset of the subdisks, we have to resort to using low-level vxmake com-
mands.

5.	 During all these steps applications can remain online until we want to switch to
the freshly created volume drivers for I/O. Unfortunately, due to OS restrictions, we
cannot replace the legacy drivers with the volume drivers while the application is
running. So we must stop the applications and restart them using the volume drivers
this time. You may adapt the vfstab as well or specify the new raw device drivers for
your database.

6.	 In case you do not need the legacy partitions anymore, you may remove them from
the disk’s VTOC.

7.	 Now freedom awaits you! Your disks, disk groups, and volumes created by encap-
sulation of partitions behave exactly the same as standard disks, disk groups, and
volumes. You may convert to CDS disks and a CDS disk group, add new disk members,
create redundancy to the volumes, resize or relayout them, add logs, and so on — all
that without interrupting running applications anymore.

Fortunately, VxVM provides a script called vxencap that performs all these steps in
collaboration with the run level script /etc/rcS.d/S86vxvm-reconfig (Solaris 9) or by
restarting the svc:/system/vxvm/vxvm-reconfig FMRI in Solaris 10. Here is the standard
procedure for application and OS disks together with some comments:

vxencap –g <DG> [-c] <dmname>=c#t#d#

This command collects data from the parameters (disk access, disk media, and disk
group name; for optional layout parameters see the "Full Battleship" part) and from the
disk itself (disk’s VTOC) and stores them together with the new VTOC and a command
summary in ASCII files under /etc/vx/reconfig.d/disk.d/c#t#d#. The –c option is used
to create a new disk group, otherwise the disk is added to an already existing disk group.
The script defaults to creating cdsdisk layout (and a CDS disk group), if possible and if not
instructed otherwise by further parameters. In case you encapsulate an OS disk of Solaris
9, the logging mount option of some OS partitions in the last field of the vfstab will be
changed to nologging (see the "Full Battleship" part).

Be aware that the vxencap command does not change the partition table of the disk
yet. This job is done by the additional init-scripts supplied by VxVM. Nothing happens to
the disk 's VTOC before you go on to the next step:

323

Root Disk Encapsulation

# init 6		 # reboot the system

During the next boot, the run level script /etc/rcS.d/S86vxvm-reconfig (Solaris 9) is
invoked during the boot process. In Solaris 10, this is integrated into the service framework
as the FMRI svc:/system/vxvm/vxvm-reconfig. It reads the disk configuration files created
above and performs the necessary tasks to bring all data partitions under VxVM control
by encapsulating them. Unfortunately, the disk group is always marked as boot disk group,
even in case of a simple application disk. In the latter case, you should clear this entry by
issuing the vxdctl bootdg command with the appropriate parameter: either the correct
boot disk group or the reserved word nodg if there is no boot disk group yet (i.e. if your root
disk is not yet encapsulated).

Since the Solaris OpenBoot PROM only recognizes partitions, encapsulating an OS
disk will, of course, not remove those partitions that are required during the early boot
process. But an OBP alias for the OS disk is created called vx-<dmname>. Note that the OBP
boot-device list is not updated. Instead of a reboot, you may stop all applications using
this disk if they are not required by the OS (unfortunately, an umount / command will
not work, even with the –f option), execute the run level script manually with the start
parameter, and restart your applications. If you compare the output of this script with the
seven steps mentioned above, you can easily map them. Here's a walk-through of encap-
sulating a Solaris disk without rebooting. All partitions of the disk have been unmounted
before we start:

vxencap -g edg -c edg01=c2t4d3
 The c2t4d3 disk has been configured for encapsulation.
/etc/rcS.d/S86vxvm-reconfig start
 VxVM vxvm-reconfig INFO V-5-2-324 The Volume Manager is now reconfiguring
(partition phase)...						 (step 1)
 VxVM vxvm-reconfig INFO V-5-2-499 Volume Manager: Partitioning c2t4d3 as an
encapsulated disk.						 (step 1)
 VxVM vxvm-reconfig INFO V-5-2-323 The Volume Manager is now reconfiguring
(initialization phase)...						 (step 2)
 VxVM vxvm-reconfig INFO V-5-2-497 Volume Manager: Adding edg01 (c2t4d3) as an
encapsulated disk.						 (step 3)
VxVM vxcap-vol INFO V-5-2-89 Adding volumes for c2t4d3...	 (step 4)
Starting new volumes...					 (step 4)
VxVM vxcap-vol INFO V-5-2-444 Updating /etc/vfstab...	 (step 5)
Remove encapsulated partitions...				 (step 6)

Root Disk Encapsulation10.3	
Encapsulating the root disk is performed in a very similar way to encapsulating a normal
data disk. However, it is different in that the target disk group normally does not exist yet,
therefore it needs to be created on-the-fly by the vxencap command. This is done by sup-
plying the parameter for "create disk group "-c -g <dgname>" to vxencap.

324

Encapsulation and Root Mirroring

So the complete command chain for encapsulating the root disk is this:

vxencap -c -g osdg -c rootdisk=c0t0d0
 The c0t0d0 disk has been configured for encapsulation.
init 6
<System rebooting…>

As you can see, after successful encapsulation (including the reboot that is necessary
to switch the access path from the standard /dev/dsk/c#t#d#s# devices to volume paths
like /dev/vx/dsk/rootvol) the / file system is now mounted from a volume manager
volume:

df -k /
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/bootdg/rootvol
 6196278 3534270 2600046 58% /

The volume manager path to all boot file systems has automatically been persisted
into the /etc/vfstab file:

grep rootvol /etc/vfstab
/dev/vx/dsk/bootdg/rootvol /dev/vx/rdsk/bootdg/rootvol / ufs 1 no logging
#NOTE: volume rootvol () encapsulated partition c0t0d0s0

Root 10.4	 Disk Mirroring
Encapsulation seems to be an interesting thing from a technical point of view. But until

now, no convincing advantages of OS disks under VxVM control are implemented. The usual
counterpart of OS disk encapsulation, the root disk mirroring, is still missing.

Against several misunderstandings, we emphasize that root disk mirroring is NOT based
on a different technique compared to regular volume mirroring. The OS mirror is NOT a
physical copy of the encapsulated OS disk, therefore, it may be placed on completely dif-
ferent disk hardware. Once again: The physical position of the subdisks is independent from
their virtual position within the plex. The only restrictions implemented in the vxassist
command are reasonable: no striping in a plex or mirroring in a volume based on one disk
device.

The regular mirror procedure (vxassist mirror) keeps plex layout attributes, while the
plex internal subdisk concatenation is ignored. We may conclude that size and position of
private and public region may not correspond on both disks, that the physical position of
the mirror subdisks are very probably not identical to those on the original disk, and that
the concatenation of the strange ghost subdisk (more on that in the technical deep dive
beginning on page 330) and the main subdisk within a plex is not repeated on the mirror
disk.

Nevertheless, mirrors of OS volumes differ in one additional feature: In order to boot

325

Root Disk Mirroring

from the disk providing the mirrored subdisks, they need partitions defined at exactly the
same position. You may call this a reversed encapsulation: While encapsulation defines
subdisks over partitions on the original disk, reverse encapsulation defines partitions over
subdisks on the mirror disk.

Implementing an OS mirror basically does not differ from the regular volume mirror-
ing: We need another disk device (due to boot capabilities this disk must use the sliced
format), add it to the boot disk group and mirror the volumes. However, if you just run
vxassist mirror on all the boot volumes, then the OBP device aliases are not updated to
enable booting from the mirror disk, and the VTOC on the target disk will not be updated
with the slice information pertaining to the newly created subdisks. I.e. the VTOC will not
contain slices for those file systems which are required during the boot phase, and so the
new boot mirror will not be actually bootable. This is because the step that we called
reverse encapsulation is never performed by vxassist.

 You can execute reverse encapsulation by calling the script vxbootsetup -g <bootdg>.
Or you can make use of the vxmirror script for mirroring the boot volumes. The vxmirror
script will automatically call vxbootsetup after mirroring all boot volumes. It also creates
an OpenBoot PROM device alias as a mnemonic to enable easy booting from the alternate
disk. The following steps mirror the boot disk after it has been successfully encapsulated:

# vxdisksetup -i c0t2d0 format=sliced privlen=1m	# prepare a boot mirror
# vxdg -g osdg adddisk osdg02=c0t2d0	 # add it to the boot disk group
# vxmirror -g osdg osdg01	 # mirror everything and reverse encapsulate
! vxassist -g osdg mirror rootvol
! vxassist -g osdg mirror swapvol
! vxassist -g osdg mirror var
! vxassist -g osdg mirror opt
! vxbootsetup -g osdg	 # this script does reverse encapsulation and devaliases

If you look at the VTOCs of the two bootable disk mirrors now, you will see that they
differ significantly. This should prove that boot disk mirroring is definitely not a physical
copy of a the boot disk, but merely a normal volume-by-volume copy, plus the reverse
encapsulation:

prtvtoc -h /dev/rdsk/c0t0d0s2
 0 2 00 4198320 12586800 16785119
 1 3 01 0 4198320 4198319
 2 5 00 0 78156480 78156479
 3 14 01 0 78156480 78156479
 4 15 01 78148320 8160 78156479
 5 7 00 16785120 4198320 20983439
 6 0 00 20983440 12586800 33570239
prtvtoc -h /dev/rdsk/c0t2d0s2
 0 2 00 4206480 12586800 16793279
 1 3 01 8160 4198320 4206479
 2 5 00 0 78156480 78156479
 3 14 01 8160 78148320 78156479
 4 15 01 0 8160 8159

326

Encapsulation and Root Mirroring

 5 7 00 16793280 4198320 20991599
 6 0 00 20991600 12586800 33578399

You can verify that the root file system (and /usr, /var, and swap as well) now con-
tain two plexes, i.e. they are mirrored and therefore failsafe:

vxprint -rtg osdg rootvol
[…]
v rootvol - ENABLED ACTIVE 4198320 ROUND - root
pl rootvol-01 rootvol ENABLED ACTIVE 4198320 CONCAT - RW
sd osdg01-B0 rootvol-01 osdg01 78148319 1 0 c0t0d0 ENA
sd osdg01-01 rootvol-01 osdg01 0 4198319 1 c0t0d0 ENA
pl rootvol-02 rootvol ENABLED ACTIVE 4198320 CONCAT - RW
sd osdg02-01 rootvol-02 osdg02 0 4198320 0 c0t2d0 ENA

For our convenience, the vxbootsetup program (the final command called internally by
vxmirror) has created device aliases in the Solaris Boot PROM so that we can boot from
either one of the mirrors by addressing them symbolically (vx-odsg01 and vx-osdg02):

eeprom nvramrc
nvramrc=devalias vx-osdg01 /pci@1f,0/ide@d/disk@0,0:a
devalias vx-osdg02 /pci@1f,0/ide@d/disk@2,0:a

327

Remarks to vxencap and OS Mirroring

The Full Battleship

Remarks to vxencap and OS Mirroring10.5	
The script vxencap provides some built-in intelligence to choose the proper disk layout:

If possible, it prepares for a cdsdisk, otherwise for a sliced layout. We recall the reasons
that may prevent using cdsdisk layout: no SCSI mode sense support, OS or EFI disk, or a
data partition to be encapsulated at the beginning of the disk. If you want to force a sliced
layout, you can make use of the option –f:

vxencap –g <diskgroup> [-c] –f sliced <dmname>=c#t#d#

Unlike the default of VxVM 5.x for a private region size of 32 MB, vxencap will create
a default private region length of 1 MB (or rounded up to the next cylinder boundary, if
sliced). Assuming that encapsulation is performed mostly on the OS disk with its simple
data structures, this default is indeed reasonable. In case you want to specify a different
private region size, just use the option –s:

vxencap –g <diskgroup> [-c] –s <size> <dmname>=c#t#d#

In order to promote other than the built-in defaults, enter the desired key-value pairs
into /etc/default/vxencap:

format=sliced
privlen=4096

Regarding the VxVM object names to be created by way of encapsulation, vxencap
allows for specification only of the disk group and the disk media name. We may guess,
and we guess quite correctly, that the subdisk names are derived from the disk media name
(<dmname>-##) and the plex names from the volume names (<volname>-##), as usual. But
what about the volume names? In case of an OS disk the root device is named rootvol and
the swap device is named swapvol. Other partitions of an OS disk are named after the last
part of the current mount directory. In case of a non-OS disk, the volumes to be created
are named after the disk media name, the partition number, and the usual vol extension
(<dmname><partition#>vol).

The root disk of Solaris 9 encapsulated by VxVM in conjunction with the logging

328

Encapsulation and Root Mirroring

option of ufs on the root device generates subsequent kernel panics, when rebooting after
a system crash. The cause is a well-known and aging programming error. Two workarounds
are available. Either you do not install the current Solaris patch 113073-14 (or 113073-13) in
favor of the rather old version 113073-08. Or you accept the modifications of /etc/vfstab
performed by vxencap which turned the logging options of the root and the swap device
into nologging. No solution is satisfactory: The first one is not tolerated by Sun support,
the second one discards the file system logging feature, thus noticeably delaying the boot
process after a system crash.

An encapsulation procedure initialized by vxencap requires some prerequisites ful-
filled, as already mentioned in the "Easy Sailing" part: At least one (cdsdisk layout) or two
(sliced) unused partition numbers must be available, and at least one disk cylinder must
not be part of an OS or application partition in order to form the private region. While the
former restriction can only be ignored by way of an exhaustive low-level procedure (see
the "Technical Deep Dive" part), the latter provides a special exception built into vxencap.
An OS disk providing the root device contains mostly also the swap device. A swap device
does not hold data required after a reboot except for the memory pages dumped in case of
a kernel panic. Therefore, the required space to form the private region may be and indeed
will be cut off from the swap device by vxencap, if all disk cylinders of the OS disk are in
use.

Although the vxencap script does not bother for peculiar partition numbers, you should
ensure that the root device is stored on partition 0 and the swap device on partition 1.
Otherwise, when creating the OS mirror by the standard vxmirror command, the invoked
vxbootsetup script will completely fail, for it is strictly bound to the mentioned partition
numbers.

Any encapsulation via vxencap and the related VxVM reconfiguration script will try to
set the VxVM bootdg attribute. Quite correct, if your first encapsulation task points to the
root disk! But wrong in any other case! Then, you should clear the bootdg attribute (stored
in /etc/vx/volboot) before encapsulating the OS disk. Note that the bootdg disk group
name is a reserved name, because it is a symbolic link to the actual boot disk group name
under /dev/vx/rdsk and /dev/vx/dsk, respectively.

vxdg bootdg
edg
vxdctl list | grep bootdg
bootdg: edg
grep bootdg /etc/vx/volboot
bootdg edg
vxdctl bootdg nodg

We already mentioned another weakness of the reconfiguration script: The OpenBoot
PROM attribute boot-device is not updated during encapsulation. Well, assuming the
default device alias entry disk typically pointing to the device we encapsulated, we encoun-
ter no restrictions. But the mirror disk provided with partitions and an NVRAM device alias
by vxbootsetup to boot from should be added to the boot-device list. Unfortunately, the
task must be executed manually:

eeprom boot-device

329

Remarks to vxencap and OS Mirroring

boot-device=disk net
eeprom boot-device='vx-osdg01 vx-osdg02 disk net'

VxVM 5.0 "delights" us with another programming error in vxbootsetup: The device
alias definitions stored in the OpenBoot PROM NVRAM are not concatenated line-by-line
as it should be, but by spaces, thus invalidating all but the first entry. Once again, repair it
manually in order to use the aliases.

eeprom nvramrc
nvramrc=devalias vx-osdg01 /pci@1f,0/ide@d/disk@0,0:a devalias vx-osdg02 /
pci@1f,0/ide@d/disk@2,0:a
eeprom nvramrc='devalias vx-osdg01 /pci@1f,0/ide@d/disk@0,0:a
 devalias vx-osdg02 /pci@1f,0/ide@d/disk@2,0:a'
eeprom nvramrc
nvramrc=devalias vx-osdg01 /pci@1f,0/ide@d/disk@0,0:a
devalias vx-osdg02 /pci@1f,0/ide@d/disk@2,0:a

Sometimes, you may read or hear the recommendation to mirror the OS disk by the
script vxrootmir. We do not recommend so, because vxrootmir <mirror-dmname> just mir-
rors rootvol and provides the mirrored disk with an appropriate partition and an OpenBoot
PROM device alias by invoking vxbootsetup. No other OS volumes are mirrored!

330

Encapsulation and Root Mirroring

Technical Deep Dive

The 10.6	 Ghost Subdisk
Encapsulating a disk means placing volumes together with their related plexes and

subdisks over partitions. So we expect a simple volume layout containing one plex each
and just one subdisk within the latter exactly corresponding to the partitions. Nevertheless,
in most cases we discover one strange volume whose plex contains two subdisks, one of
them only one sector in size.

vxprint -rtg osdg rootvol
[…]
v rootvol - ENABLED ACTIVE 815176 ROUND - root
pl rootvol-01 rootvol ENABLED ACTIVE 815176 CONCAT - RW
sd osdg01-B0 rootvol-01 osdg01 815175 1 0 c0t0d0 ENA
sd osdg01-01 rootvol-01 osdg01 0 815175 1 c0t0d0 ENA
pl rootvol-02 rootvol ENABLED ACTIVE 815176 CONCAT - RW
sd osdg02-01 rootvol-02 osdg02 0 815176 0 c0t2d0 ENA

This small subdisk, sometimes called "Ghost subdisk", is indeed cloak-and-dagger at
first sight, but quite easy to understand at second thought as an unavoidable protection
against disk failure for VxVM disks.

The volume table of contents of the disk (VTOC) which is located at the very first sector
of the disk, stores the partition table and some disk attributes. It is strictly necessary for
normal disk I/O operations, for the device drivers need partition information to calculate I/O
offsets. A damaged VTOC requires immediate recovery by re-labeling the disk.

prtvtoc -h /dev/rdsk/c4t6d0s2
 2 5 01 0 35368272 35368271
 7 15 01 0 35368272 35368271
dd if=/dev/zero of=/dev/rdsk/c4t6d0s2 bs=512 count=1
prtvtoc -h /dev/rdsk/c4t6d0s2
prtvtoc: /dev/rdsk/c4t6d0s2: Unable to read Disk geometry
format c4t6d0
[…]
format> label
Ready to label disk, continue? yes

format> quit
prtvtoc -h /dev/rdsk/c4t6d0s2
 0 2 00 0 263872 263871
 1 3 01 263872 263872 527743
 2 5 01 0 35368272 35368271

331

The Ghost Subdisk

 6 4 00 527744 34840528 35368271

As the example above demonstrated, the VTOC may be overwritten by standard device
drivers. We have chosen the backup partition (slice 2) covering the whole disk which is not
a device for regular I/O operations. Nevertheless, even a regular data partition may contain
the VTOC. And indeed, most formatted disks provide a partition starting at cylinder 0, thus
including the VTOC into the partition space. Therefore, the block device drivers for parti-
tions skip the first 16 sectors of their raw device partition, the main super block being the
first file system object is always placed at sector 16 of the raw device. Why 16 sectors, not
just one? Well, not only the VTOC needs protection, but also a possible boot block stored
at sector 1 to 15 of the root partition.

fstyp -v /dev/rdsk/c4t6d0s0
ufs
magic 11954 format dynamic time Sat Oct 4 08:24:30 2008
sblkno 16 cblkno 24 iblkno 32 dblkno 2240
[…]

All the same, even the swap device driver skips the first 16 sectors (although a boot
block is of no use on a swap device).

swap -l
swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 32,1 16 2097632 2097632

Even a disk under VxVM control must not overwrite the VTOC. The cdsdisk layout of a
VxVM disk always skips the first 256 sectors of a disk, thus protecting not only the Solaris
VTOC, but also other OS specific structures of other operating systems.

vxdisk list c4t1d0 | grep ^private:
private: slice=2 offset=256 len=2048 disk_offset=0

A freshly initialized VxVM disk of sliced layout even skips the first cylinder of a disk by
starting the private region at cylinder 1 and defining the public region on the remainder of
the disk. What is more, the active private region skips the first sector of the private region
as partition for a reason we will explain later.

prtvtoc -h /dev/rdsk/c4t3d0s2
 2 5 01 0 35368272 35368271
 3 15 01 4712 4712 9423
 4 14 01 9424 35358848 35368271
vxdisk list c4t3d0 | grep ^private:
private: slice=3 offset=1 len=4455 disk_offset=4712

Unlike the cdsdisk layout, the start position of the private region of the sliced layout
is not fixed. In fact, the private region may be placed at ANY position on the disk, not only at
the beginning (after first cylinder, default) or the end of the disk (vxdisksetup -ie c#t#d#;

332

Encapsulation and Root Mirroring

see the next topic of the current chapter). Consequently, the public region may cover the
first cylinder together with the VTOC. Just an example of a (small) sliced disk whose private
region is located at the end of the disk (not created by vxdisksetup -ie …):

prtvtoc /dev/rdsk/c4t8d0s2
[…]
* 4712 sectors/cylinder
* 176 cylinders
* 174 accessible cylinders
[…]
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount Directory
 2 5 01 0 819888 819887
fmthard -d 3:15:01:$((819888-4712)):4712 /dev/rdsk/c4t8d0s2
fmthard -d 4:14:01:0:$((819888-4712)) /dev/rdsk/c4t8d0s2
vxdisk -f init c4t6d0 format=sliced
vxdisk list
[…]
c4t6d0s2 auto:sliced - - online
prtvtoc -h /dev/rdsk/c4t8d0s2
 2 5 01 0 819888 819887
 3 15 01 815176 4712 819887
 4 14 01 0 815176 815175

Red alert! A subdisk placed over the VTOC but arranged at a plex offset greater than 0
by way of subdisk concatenation may receive block or swap device I/O, thus overwriting the
VTOC and making disk and volume unusable (VxVM 4.x, VxVM 5.0 keeps partition informa-
tion in the kernel until the next reboot). The following picture uses the sector and cylinder
numbers of the command output above. Note that it does not show an actual configuration
possibility of VxVM, for VxVM does not allow a subdisk to be placed over the VTOC by a
technique still to be explained.

sector 0
VTOC

sector 1 sector
4711

sector
4712

sector
815175

sector
815177

sector
815176

sector
819887

Cylinder 0 Cylinder 1-172 Cylinder 173

Public region as partition Private region as partition

Subdisk

A subdisk covering the VTOC (virtual example)Figure 10-2:

Now assume two disks initialized by VxVM in the layout above and the subdisks of
each disk concatenated within a plex.

333

The Ghost Subdisk

V
T

O
C

V
T

O
C

A VxVM volume built on subdisks concatenated within the plex Figure 10-3:
and the location of the VTOCs covered by the subdisks (virtual
example)

Red alert, indeed! The VTOC being part of the second subdisk is located in the middle
of the virtual address space provided by the plex. Even a block or a swap device driver
skipping the first 16 sectors of the device (now a volume device!) may overwrite the VTOC
of the second disk.

Therefore, any virtual volume manager providing concatenate or stripe capabilities
MUST protect the VTOC, for it is not protected by the device drivers anymore. VxVM has
implemented a quite simple solution: The start sector of the public region as subdisk con-
tainer (not as partition) is moved one sector rearwards, thus starting immediately after the
VTOC.

sector 0
VTOC

sector 1 sector
4711

sector
4712

sector
815175

sector
815177

sector
815176

sector
819887

Cylinder 0 Cylinder 1-172 Cylinder 173

Public region as partition Private region as partition

Subdisk

Public region as subdisk container

Protecting the VTOC by moving the public region as subdisk Figure 10-4:
container one sector rearwards

334

Encapsulation and Root Mirroring

Note that the subdisk offsets of the disk group configuration are calculated against the
public region as subdisk container. Therefore, the subdisk drawn in the figure above has an
offset of 0 sectors. Some commands to verify the disk layout and the subdisk position:

vxdisk list c4t8d0
[…]
public: slice=4 offset=1 len=815175 disk_offset=0
private: slice=3 offset=1 len=4711 disk_offset=815176
[…]
vxdg init adg adg01=c4t8d0 cds=off
vxdg -g adg set align=1
vxdg -g adg free
DISK DEVICE TAG OFFSET LENGTH FLAGS
adg01 c4t8d0s2 c4t8d0 0 815175 -
vxmake -g adg sd adg01-01 disk=adg01 offset=0 len=815175
vxprint -stg adg
SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE
[…]
sd adg01-01 - adg01 0 815175 - c4t8d0 ENA

We immediately recognize a disadvantage of this solution: The public region and the
subdisk is one sector smaller than before. Well, you might believe that we easily could
squander one sector. No, there is indeed a realistic scenario where we urgently need this
sector. Assume an OS disk completely in use except for one cylinder we kept for the private
region (or cut of from the swap partition by VxVM tools during encapsulation). The fol-
lowing figure just shows the OS root partition, for multiple partitions do not modify the
basic problem:

sector 0
VTOC

sector 1 sector
4711

sector
4712

sector
815175

sector
815177

sector
815176

sector
819887

Cylinder 0 Cylinder 1-172 Cylinder 173

Public region as partition Private region as partition

Subdisk

Public region as subdisk container

OS root partition

OS root partition not completely covered by the subdiskFigure 10-5:

The root volume based on the subdisk is one sector smaller than the root partition.
However, one sector less in size is not the main problem. Look at the data at the beginning
of the root device as partition:

335

The Ghost Subdisk

sector 0 sector 1 sector
815175

sector 15 sector 16 sector 17

VTOC Boot Block
Main Super

Block File System Data

File system structure of the root device as partitionFigure 10-6:

Now we compare it to the data at the beginning of the root device as volume based on
the subdisk starting at disk offset 1 (which is offset 0 within the public region as subdisk
container):

sector 0 sector
815174

sector 14 sector 15 sector 16

Boot Block
Main Super

Block File System Data

File system structure of the root device as volumeFigure 10-7:

The OpenBoot PROM accesses the boot device as partition, so the missing VTOC and
the wrong boot block position within the root volume are ignored. During kernel initial-
ization, the root device is mapped by vxio as a kernel memory volume exactly on the
root partition (including the VTOC), so the file system provides proper structures. But the
remount of the root device as volume based on the disk group configuration stored within
the private region of the OS disk during the single user mode/milestone will detect a cor-
rupt file system: Sector 16 of rootvol does not contain the main super block!

Well, the main super block kept its correct position on the root partition. We simply
need to adjust the offsets within the plex of rootvol by moving them one sector rearwards.
That may be easily accomplished by the capabilities of a logical volume management with
completely flexible subdisk architecture: Concatenate the main subdisk of rootvol to a
subdisk just one sector in size, to the "Ghost subdisk"!

336

Encapsulation and Root Mirroring

sector 1 sector
815175

sector 15 sector 16 sector 17

Boot Block
Main Super

Block File System Data

sector 0

Anything

Ghost
subdisk

Main subdisk

File system structure of the root device as volume with "Ghost Figure 10-8:
subdisk"

Finally the main super block is located at the correct volume device offset. The Ghost
subdisk is placed at the plex offset 0. But where to place the Ghost subdisk physically? A
logical volume management discerns between the physical and the logical position of its
building blocks. We might initialize another disk for the disk group in order to store the
Ghost subdisk. What a ridiculous waste of space! A new disk for a subdisk of just 1 sec-
tor!

VxVM can do better. The private region as configuration container gets an offset of 1
sector compared to the beginning of the private region as partition. We may easily forego
one sector of the private region, that only means a maximum of two configurable VxVM
objects less than before (approx. 3000 objects in our example). But you cannot define a
subdisk outside of the public region. No trouble whatsoever! We extend the public region
partition to the boundaries of the whole disk, thus covering the private region partition
as well. In order to prohibit subdisks within the configuration part of the private region,
we limit the end of the public region as subdisk container to the first sector of the private
region as partition.

sector 0
VTOC

sector 1 sector
4711

sector
4712

sector
815175

sector
815177

sector
815176

sector
819887

Public region as partition (size 819888 sectors)

Private region as partition

Main subdisk (size 815175 sectors)

Private region as
configuration container

Ghost sd

Public region as subdisk container
(size 815176 sectors)

Extended public region and the position of the Ghost subdiskFigure 10-9:

The same disk configuration by command output:

vxdisk list c4t8d0
[…]

337

The Ghost Subdisk

public: slice=3 offset=1 len=815176 disk_offset=0
private: slice=4 offset=1 len=4171 disk_offset=815176
[…]

Given the usual drivers performing I/O (block or swap device), the Ghost subdisk will
not be affected by any I/O, for they skip the first 16 sectors of the device. Therefore, the
Ghost subdisk is NOT a performance drawback, although some people promoting a cheaper
but less intelligent volume management try to make you believe so. It does not look really
pretty, maybe. If you care for beauty, then install your Solaris system on a disk keeping the
first (two) cylinders unused by OS partitions. Or you should mirror the volumes created by
encapsulation (we assume c0t0d0s2 and its disk media name osdg01) to a freshly initialized
sliced VxVM disk (osdg02). That disk layout always skips the first cylinder and creates the
private region and public region partitions mutually exclusive on the remaining disk (see
OS mirror section above, p.324-326). Then, re-initialize and re-mirror the original OS disk
by the following list of commands:

vxplex -g bootdg -o rm dis $(
 vxprint -g bootdg -pne 'pl_sd.sd_dmname="osdg01"')
vxdg -g bootdg rmdisk osdg01
vxdisksetup -i c0t0d0 format=sliced privlen=1m
vxdg -g bootdg adddisk osdg01=c0t0d0
vxmirror -g bootdg osdg02 osdg01

338

Encapsulation and Root Mirroring

Manual 10.7	 Encapsulation Walkthrough

Assumptions and Prerequisites10.7.1	

Two purposes are connected with the following section: to help an understanding of
the basic encapsulation procedure and to show some kind of "worst case" scenario where
the standard command line interfaces will fail. What does "worst case" exactly mean?

1.	 The vxencap script needs at least one (cdsdisk layout) or two (sliced) unused parti-
tions in order to create the VxVM partition (cdsdisk) or the private region and public
region partitions (sliced). But unfortunately, all partitions are already in use and
cannot be foregone.

2.	 Any encapsulation procedure needs a small amount of unused disk space in order to
create the private region out of it and to store the new VxVM objects. But there is no
free space on the disk to become the private region.

3.	 Encapsulation enables volume sizes beyond disk limits, data redundancy, performance
tuning, and the flexibility of online volume management. Our example will deal only
with data mirroring, for new worries will await us (further resize and relayout opera-
tions are plain sailing and therefore not discussed).

4.	 For cross platform compatibility (and another reason to be explained later), we wish
to convert the file systems of type ufs on our partitions into vxfs.

5.	 As long as the first disk cylinder is in use by a partition holding application data, any
encapsulation procedure will protect the VTOC by replacing sector 0 by the Ghost
subdisk to recreate the proper device offsets (see previous section). The private region
cannot be placed at the fixed disk offset of 256 sectors of the cdsdisk layout. Thus,
a sliced layout must be created without the capabilities of "Cross Platform data
Sharing". Both the Ghost subdisk colliding with the CDS disk group subdisk alignment
of 8 kB and the wrong position of the private region hinder us to easily activate CDS
features.

6.	 Veritas software is designed to aid high availability. But two file system based OS
limitations force a temporary application interruption: It is impossible to replace the
partition drivers by their corresponding volume drivers and to modify the file system
layout from ufs to vxfs, while the application is running on the device. All we can
do is to try to stop and restart the applications as quickly as possible. That calls sus-
piciously for a script running the commands in uninterrupted sequence.

Just look at the following command outputs to determine the current state of the
partition based "applications" (the file systems each holding a large file are mounted):

prtvtoc /dev/rdsk/c4t1d0s2
[…]
* 4712 sectors/cylinder
* 7508 cylinders
* 7506 accessible cylinders

339

Manual Encapsulation Walkthrough

[…]
* First Sector Last
* Partition Tag Flags Sector Count Sector Mount Directory
 0 0 00 0 5051264 5051263 /mnt0
 1 0 00 5051264 5051264 10102527 /mnt1
 2 5 01 0 35368272 35368271
 3 0 00 10102528 5051264 15153791 /mnt3
 4 0 00 15153792 5051264 20205055 /mnt4
 5 0 00 20205056 5051264 25256319 /mnt5
 6 0 00 25256320 5051264 30307583 /mnt6
 7 0 00 30307584 5060688 35368271 /mnt7
df -k /mnt?
Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c4t1d0s0 2474263 2098193 326585 87% /mnt0
/dev/dsk/c4t1d0s1 2474263 2098193 326585 87% /mnt1
/dev/dsk/c4t1d0s3 2474263 2098193 326585 87% /mnt3
/dev/dsk/c4t1d0s4 2474263 2098193 326585 87% /mnt4
/dev/dsk/c4t1d0s5 2474263 2098193 326585 87% /mnt5
/dev/dsk/c4t1d0s6 2474263 2098193 326585 87% /mnt6
/dev/dsk/c4t1d0s7 2478975 2098193 331203 87% /mnt7
for i in 0 1 3 4 5 6 7; do fstyp /dev/rdsk/c4t1d0s$i; done | uniq
ufs

Basic Considerations10.7.2	

Our desperate try to use the standard vxencap script and following the clean-up:

vxencap -g edg -c edg01=c4t1d0
 VxVM vxencap ERROR V-5-2-213
It is not possible to encapsulate c4t1d0, for the following reason:
 <VxVM vxslicer ERROR V-5-1-754 Not enough free partitions.>
rm -r /dev/vx/reconfig.d/disk.d/c4t1d0

Well, that did not work! Some thoughts and remarks on the list of difficulties will
clear the way we need to walk on. Since our "worst case" assumption does not allow for
a removal of any application data, we may shrink a device only at its end to free a small
amount of space for the private region. This implies that we cannot shrink the first partition
at its beginning in order to enable a cdsdisk layout, and that we must convert ufs, which
cannot be shrunken, to vxfs at least on one partition at the very beginning. We choose
slice 5 (for an imaginary reason) to be stopped early in order to convert the file system to
vxfs and to shrink it by one cylinder.

Furthermore, the inevitable sliced layout requires two unused partition numbers.
Partition 5, already suffering early application shutdown, will serve as the private region
(even though located in the middle of the disk), partition 7 (once again for an imaginary
reason) will define the public region and must be freed from application access as well.

340

Encapsulation and Root Mirroring

Storing the Disk Layout10.7.3	

Since our procedure removes two partitions from the VTOC before the correspondent
subdisks are created, storing the offset and the length of the partitions is required (except
for the backup slice, of course). By the way, we will determine the size of a disk cylinder
and of the whole disk in order to create the private and the public region in the proper
size. Finally, we will convert the partition offsets into subdisk offsets (decremented by 1
due to the VTOC protection) and, for the first slice (slice 0, VTOC protection) and slice 5
(one cylinder split to become the private region), the partition lengths into subdisk lengths.
Here is our first code fragment:

Disk=c4t1d0
File=/tmp/$Disk.$$

prtvtoc /dev/rdsk/${Disk}s2 |
nawk '
 $3=="sectors/cylinder" {print "SecPerCyl",$2; SecPerCyl=$2}
 $1~/^[0134567]$/ {
 if ($1==5) {print "OffsetPrivReg",$6-SecPerCyl+1; $5-=SecPerCyl}
 if ($4==0) {print "FirstPart",$1;$5--} else {$4--}
 print $1,$4,$5
 }
 $1==2 {print "SecOfDisk",$5}
' > $File

Defining Private and Public Region10.7.4	

Nothing happened to the disk and to the applications, because our script collected
data in a non-intrusive manner. The next step requires application stop for partition 5:
The file system needs to be unmounted in order to convert ufs to vxfs in order to shrink
the file system by the size of one cylinder. Conversion of ufs to vxfs just inactivates the
former ufs metadata by addressing the blocks holding file content by vxfs metadata. So,
a file system check is required to free the device from invalid ufs structures (a full check
without log replay, for there are still no valid log data). Finally, the current vxfs file system
is shrunken by the size of one cylinder which requires a temporary mount.

NewSize=$(nawk '$1==5 {print $3}' $File)
umount /mnt5
vxfsconvert -y /dev/rdsk/${Disk}s5
fsck -F vxfs -o full,nolog -y /dev/rdsk/${Disk}s5
mount -F vxfs /dev/dsk/${Disk}s5 /mnt5
fsadm -F vxfs -b $NewSize -r /dev/rdsk/${Disk}s5 /mnt5
umount /mnt5

Defining subdisks, plexes, and volumes requires a disk initialized for VxVM (private and

341

Manual Encapsulation Walkthrough

public region) as a disk group member. The previous step created disk space one cylinder in
size and not used by the file systems. In order to initialize the disk for VxVM, we still need
two unused partition numbers: The file system of partition 5 is unmounted, and partitions
5 and 7 are removed from the VTOC.

umount /mnt7
fmthard -d 5:0:0:0:0 /dev/rdsk/${Disk}s2
fmthard -d 7:0:0:0:0 /dev/rdsk/${Disk}s2

We redefine partitions 5 and 7 to become private and public region. The private region,
formerly the last cylinder of slice 5, is located in the middle of the disk. Therefore, slice
7 as the public region must cover the whole disk in order to cover all application parti-
tions. As we already know, VxVM does not worry about a private region being part of the
public region. Disk initialization for VxVM is completed by writing a basic structure into
the private region.

SecPerCyl=$(nawk '$1=="SecPerCyl" {print $2}' $File)
SecOfDisk=$(nawk '$1=="SecOfDisk" {print $2}' $File)
OffsetPrivReg=$(nawk '$1=="OffsetPrivReg" {print $2}' $File)
fmthard -d 5:15:01:$OffsetPrivReg:$SecPerCyl /dev/rdsk/${Disk}s2
fmthard -d 7:14:01:0:$SecOfDisk /dev/rdsk/${Disk}s2
vxdisk -f init $Disk format=sliced privlen=1m

Creating 10.7.5	 Subdisks, Plexes, and Volumes

We already overcame some difficult obstacles. Remember that still five of seven appli-
cations are running without interruption. The next steps define the typical VxVM objects to
create the volume drivers on the disk spaces accessed by the partitions. But, of course, the
disk must become a disk group member first. The following code part defines the default
disk group for the script, initializes the disk group and creates the Ghost subdisk located
at the first sector of the private region. The variable FirstPart stores the number of the
partition starting at cylinder 0, because the Ghost subdisk is needed for offset alignment
within the corresponding plex.

export VXVM_DEFAULTDG=edg
vxdg init edg edg01=$Disk cds=off
vxdg set align=1
Ghost subdisk
vxmake sd edg01-B0 disk=edg01 offset=$((OffsetPrivReg-1)) len=1
FirstPart=$(nawk '$1=="FirstPart" {print $2}' $File)

Within a loop over all application partition numbers, the subdisks are placed over the
partitions, and the plexes and finally the volumes are built out of them. The volumes are
started, the still mounted file systems unmounted, the underlying partitions removed, the
file systems converted to vxfs and checked, and finally remounted as vxfs based on the
volume drivers.

342

Encapsulation and Root Mirroring

for i in 0 1 3 4 5 6 7; do
 nawk '$1=='$i' {print $2,$3}' $File | read Offset Len
 vxmake sd edg01-0$i disk=edg01 offset=$Offset len=$Len
 if ((i==FirstPart)); then
 vxmake plex vol$i-01 sd=edg01-B0,edg01-0$i
 else
 vxmake plex vol$i-01 sd=edg01-0$i
 fi
 vxmake vol vol$i plex=vol$i-01 usetype=fsgen
 vxvol start vol$i
 if ((i!=5 && i!=7)); then
 umount /mnt$i
 fmthard -d $i:0:0:0:0 /dev/rdsk/${Disk}s2
 fi
 if ((i!=5)); then
 vxfsconvert -y /dev/vx/rdsk/edg/vol$i
 fsck -F vxfs -o full,nolog -y /dev/vx/rdsk/edg/vol$i
 fi
 mount -F vxfs /dev/vx/dsk/edg/voli /mnti
done

Wow, the worst part has completed! Our script has (successfully, we hope) executed
the time-critical parts of the conversion. All applications are online once again and do not
need to be stopped for the following volume and file system management tasks. Lean back
for a few seconds and breathe deeply! Then, have a look at the complete script once again
with some comments, output redirections, and further output displaying the time required
to execute the steps (41 sec. totally, most applications stopped just for a few seconds).

cat ./encap_advanced
#!/bin/ksh

Disk=c4t1d0
File=/tmp/$Disk.$$

Store disk layout
echo $(date +%H:%M:%S): Storing disk layout
prtvtoc /dev/rdsk/${Disk}s2 |
nawk '
 $3=="sectors/cylinder" {print "SecPerCyl",$2; SecPerCyl=$2}
 $1~/^[0134567]$/ {
 if ($1==5) {print "OffsetPrivReg",$6-SecPerCyl+1; $5-=SecPerCyl}
 if ($4==0) {print "FirstPart",$1;$5--} else {$4--}
 print $1,$4,$5
 }
 $1==2 {print "SecOfDisk",$5}
' > $File

343

Manual Encapsulation Walkthrough

Convert /mnt5 to VxFS, then shrink it to create space for private region
echo $(date +%H:%M:%S): Convert /mnt5 to VxFS and shrink
NewSize=$(nawk '$1==5 {print $3}' $File)
umount /mnt5
vxfsconvert -y /dev/rdsk/${Disk}s5 >/dev/null 2>&1
fsck -F vxfs -o full,nolog -y /dev/rdsk/${Disk}s5 >/dev/null
mount -F vxfs /dev/dsk/${Disk}s5 /mnt5
fsadm -F vxfs -b $NewSize -r /dev/rdsk/${Disk}s5 /mnt5 >/dev/null
umount /mnt5

Delete partitions 5 and 7
echo $(date +%H:%M:%S): Delete partitions 5 and 7
umount /mnt7
fmthard -d 5:0:0:0:0 /dev/rdsk/${Disk}s2
fmthard -d 7:0:0:0:0 /dev/rdsk/${Disk}s2

Initialize disk as VxVM disk
echo $(date +%H:%M:%S): Initialize disk as VxVM disk
SecPerCyl=$(nawk '$1=="SecPerCyl" {print $2}' $File)
SecOfDisk=$(nawk '$1=="SecOfDisk" {print $2}' $File)
OffsetPrivReg=$(nawk '$1=="OffsetPrivReg" {print $2}' $File)
fmthard -d 5:15:01:$OffsetPrivReg:$SecPerCyl /dev/rdsk/${Disk}s2
fmthard -d 7:14:01:0:$SecOfDisk /dev/rdsk/${Disk}s2
vxdisk -f init $Disk format=sliced privlen=1m

Create disk group, build subdisks, plexes, volumes
echo $(date +%H:%M:%S): Create disk group
export VXVM_DEFAULTDG=edg
vxdg init edg edg01=$Disk cds=off
vxdg set align=1
Ghost subdisk
vxmake sd edg01-B0 disk=edg01 offset=$((OffsetPrivReg-1)) len=1
FirstPart=$(nawk '$1=="FirstPart" {print $2}' $File)

for i in 0 1 3 4 5 6 7; do
 echo $(date +%H:%M:%S): Create volume vol$i
 nawk '$1=='$i' {print $2,$3}' $File | read Offset Len
 vxmake sd edg01-0$i disk=edg01 offset=$Offset len=$Len
 if ((i==FirstPart)); then
 vxmake plex vol$i-01 sd=edg01-B0,edg01-0$i
 else
 vxmake plex vol$i-01 sd=edg01-0$i
 fi
 vxmake vol vol$i plex=vol$i-01 usetype=fsgen
 vxvol start vol$i
 if ((i!=5 && i!=7)); then

344

Encapsulation and Root Mirroring

 umount /mnt$i
 fmthard -d $i:0:0:0:0 /dev/rdsk/${Disk}s2
 fi
 if ((i!=5)); then
 echo $(date +%H:%M:%S): Convert vol$i to VxFS
 vxfsconvert -y /dev/vx/rdsk/edg/vol$i >/dev/null 2>&1
 fsck -F vxfs -o full,nolog -y /dev/vx/rdsk/edg/vol$i >/dev/null
 fi
 echo $(date +%H:%M:%S): Mount vol$i to /mnt$i
 mount -F vxfs /dev/vx/dsk/edg/voli /mnti
done

./encap_advanced
16:05:11: Storing disk layout
16:05:11: Convert /mnt5 to VxFS and shrink
16:05:16: Delete partitions 5 and 7
16:05:16: Initialize disk as VxVM disk
16:05:18: Create disk group
16:05:20: Create volume vol0
16:05:22: Convert vol0 to VxFS
16:05:25: Mount vol0 to /mnt0
16:05:25: Create volume vol1
16:05:26: Convert vol1 to VxFS
16:05:34: Mount vol1 to /mnt1
[…]
16:05:48: Create volume vol7
16:05:49: Convert vol7 to VxFS
16:05:52: Mount vol7 to /mnt7

We check the results. Note that the private region as configuration container indeed
covers just 1 MB of the private region as partition, as instructed by our initialization
parameters.

vxdisk list c4t1d0
[…]
info: format=sliced,privoffset=1,pubslice=7,privslice=5
[…]
public: slice=7 offset=1 len=35368271 disk_offset=0
private: slice=5 offset=1 len=2048 disk_offset=25251608
[…]
vxprint -rtg edg
[…]
dm edg01 c4t1d0s2 auto 2048 35368271 -

v vol0 - ENABLED ACTIVE 5051264 ROUND - fsgen
pl vol0-01 vol0 ENABLED ACTIVE 5051264 CONCAT - RW
sd edg01-B0 vol0-01 edg01 25251607 1 0 c4t1d0 ENA

345

Manual Encapsulation Walkthrough

sd edg01-00 vol0-01 edg01 0 5051263 1 c4t1d0 ENA

v vol1 - ENABLED ACTIVE 5051264 ROUND - fsgen
pl vol1-01 vol1 ENABLED ACTIVE 5051264 CONCAT - RW
sd edg01-01 vol1-01 edg01 5051263 5051264 0 c4t1d0 ENA
[…]
v vol7 - ENABLED ACTIVE 5060688 ROUND - fsgen
pl vol7-01 vol7 ENABLED ACTIVE 5060688 CONCAT - RW
sd edg01-07 vol7-01 edg01 30307583 5060688 0 c4t1d0 ENA
df -k /mnt?
Filesystem kbytes used avail capacity Mounted on
/dev/vx/dsk/edg/vol0 2525632 2098928 400042 84% /mnt0
/dev/vx/dsk/edg/vol1 2525632 2098928 400042 84% /mnt1
/dev/vx/dsk/edg/vol3 2525632 2098928 400042 84% /mnt3
/dev/vx/dsk/edg/vol4 2525632 2098928 400042 84% /mnt4
/dev/vx/dsk/edg/vol5 2523276 2098928 397833 85% /mnt5
/dev/vx/dsk/edg/vol6 2525632 2098928 400042 84% /mnt6
/dev/vx/dsk/edg/vol7 2530344 2098928 404460 84% /mnt7
for i in 0 1 3 4 5 6 7; do fstyp /dev/vx/rdsk/edg/vol$i; done | uniq
vxfs

Mirroring and Preparing for CDS10.7.6	

Data redundancy still lacks. While planning volume mirroring, we keep in mind that
we want to migrate to a CDS disk group. Therefore, we initialize the second disk of our disk
group in the cdsdisk layout. As long as the cds disk group attribute is cleared, we may
mix both disk layouts within a disk group. Our slight hope to easily convert disks and disk
group by the standard vxcdsconvert command, so that CDS capabilities are activated, is
(we might have expected it) immediately dashed.

vxdisksetup -i c4t2d0 privlen=1m
vxdg -g edg adddisk edg02=c4t2d0
vxdisk -g edg list
DEVICE TYPE DISK GROUP STATUS
c4t1d0s2 auto:sliced edg01 edg online
c4t2d0s2 auto:cdsdisk edg02 edg online
vxcdsconvert -g edg -o novolstop group evac_subdisks_ok=yes privlen=1m
VxVM vxcdsconvert ERROR V-5-2-2763 c4t1d0s2: Public and private regions overlap
VxVM vxcdsconvert ERROR V-5-2-3120 Conversion process aborted

Well, no flight in a luxurious airplane, instead a long exhausting way on foot? No, we
still may make use of efficient VxVM scripts. But in order to achieve the desired result by
not too long a list of commands, we must use our brains a little bit. A simple volume mir-
roring executed by vxmirror would produce a result we could not go on with (we assume
the same disk and cylinder size for the mirror disk). Why? A requirement for the conver-
sion to a CDS disk group is still not met: the subdisk alignment to 8 kB blocks. Neither all

346

Encapsulation and Root Mirroring

volume sizes nor all subdisk offsets nor all subdisk lengths on the mirror disk are or would
be integer multiples of 8 kB:

vxprint -g edg -vF '%name %len'|nawk '{printf "%s %.2f\n",$1,$2/16}'
vol0 315704.00
vol1 315704.00
vol3 315704.00
vol4 315704.00
vol5 315409.50
vol6 315704.00
vol7 316293.00
vxprint -g edg -se 'sd_dmname="edg02"' -F '%name %offset %len' |
 nawk '{printf "%s %10.2f %10.2f\n",$1,$2/16,$3/16}'
edg02-01 150.50 315704.00
edg02-02 315854.50 315704.00
edg02-03 631558.50 315704.00
edg02-04 947262.50 315704.00
edg02-05 1262966.50 315409.50
edg02-06 1578376.00 315704.00
edg02-07 1894080.00 316293.00

Since the original disk has sliced layout and must be remirrored, we may ignore the
subdisk offsets unsuitable to a CDS disk group. But the wrong volume length bothers us.
What is the next integer multiple of the current volume length? How many sectors are
missing? Nevertheless, adding the difference of the desired and the current volume size to
the volume length in order to create an integer multiple of 8 kB fails:

vxprint -g edg -F %len vol5
5046552
echo $(((5046552/16+1)*16))
5046560
echo $((5046560-5046552))
8
vxresize -g edg -F vxfs -x vol5 +8 edg01
VxVM vxassist ERROR V-5-1-436 Cannot allocate space to grow volume to 5046560
blocks
VxVM vxresize ERROR V-5-1-4703 Problem running vxassist command for volume vol5,
in diskgroup edg

Is it indeed impossible to allocate just eight blocks on the original disk? We built the
private region out of a partition one cylinder in size, i.e. 4712 sectors given our example.
But we fixed the size of the private region as configuration container by 1 MB (= 2048 sec-
tors), therefore 4712 - 2048 = 2664 sectors should be available for new subdisks (1 sector
already in use by the Ghost subdisk). We remember that in most cases the "Cannot allocate
space" error message is misleading: There is enough space, but layout restrictions would
be violated. The current layout restriction is the default diskalign attribute of vxassist
enforcing subdisk creation at cylinder boundaries. Once recognized as the source of our

347

Manual Encapsulation Walkthrough

troubles, we simply turn it of and retry the resize operation:

vxassist help showattrs
#Attributes:
 layout=nomirror,nostripe,nomirror-stripe,nostripe-mirror,nostripe-mirror-
col,nostripe-mirror-sd,
noconcat-mirror,nomirror-concat,span,nocontig,raid5log,noregionlog,diskalign,no
storage
[…]
echo layout=nodiskalign > /etc/default/vxassist
vxassist help showattrs
#Attributes:
 layout=nomirror,nostripe,nomirror-stripe,nostripe-mirror,nostripe-mirror-
col,nostripe-mirror-sd,
noconcat-mirror,nomirror-concat,span,nocontig,raid5log,noregionlog,nodiskalign,
nostorage
[…]
vxresize -g edg -F vxfs -x vol5 +8 edg01
vxmirror -g edg edg01
! vxassist -g edg mirror vol0
! vxassist -g edg mirror vol1
! vxassist -g edg mirror vol3
! vxassist -g edg mirror vol4
! vxassist -g edg mirror vol5
! vxassist -g edg mirror vol6
! vxassist -g edg mirror vol7

The nodiskalign attribute ensures that the mirror procedure of vxmirror (based on
vxassist mirror commands) will not fit the subdisks at cylinder boundaries anymore,
will place the first subdisk immediately after the private region of the mirror disk (having
cdsdisk layout), and therefore will not run out of space. The mirror disk already fulfills all
criteria to become part of a CDS disk group.

The original disk must be re-initialized as a CDS suitable disk and completely re-
mirrored by the same procedure.

vxplex -g edg -o rm dis $(vxprint -g edg -pne 'pl_sd.sd_dmname="edg01"')
vxdg -g edg rmdisk edg01
vxdisksetup -i c4t1d0 privlen=1m
vxdg -g edg adddisk edg01=c4t1d0
vxdisk -g edg list
DEVICE TYPE DISK GROUP STATUS
c4t1d0s2 auto:cdsdisk edg01 edg online
c4t2d0s2 auto:cdsdisk edg02 edg online
vxprint -dtg edg
DM NAME DEVICE TYPE PRIVLEN PUBLEN STATE

dm edg01 c4t1d0s2 auto 2048 35365968 -

348

Encapsulation and Root Mirroring

dm edg02 c4t2d0s2 auto 2048 35365968 -
vxmirror -g edg edg02
! vxassist -g edg mirror vol0
! vxassist -g edg mirror vol1
! vxassist -g edg mirror vol3
! vxassist -g edg mirror vol4
! vxassist -g edg mirror vol5
! vxassist -g edg mirror vol6
! vxassist -g edg mirror vol7

Converting to CDS10.7.7	

Now the final steps! VxFS is already a cross platform compatible file system (except for
Windows), but the disk group is still not completely prepared for CDS. The subdisk align-
ment needs to be changed to 8 kB, and the cds attribute of the disk group must be set.
The former vxassist defaults are reset, a file system defragmentation may be useful, and
appropriate /etc/vfstab entries should contain the volume drivers and vxfs.

vxprint -Gg edg -F '%align %cds'
1 off
vxdg -g edg set align=16
vxdg -g edg set cds=on
vxprint -Gg edg -F '%align %cds'
16 on
rm /etc/default/vxassist
for i in 0 1 3 4 5 6 7; do fsadm -F vxfs -de /mnt$i; done
vi /etc/vfstab
[…]
/dev/vx/dsk/edg/vol0 /dev/vx/rdsk/edg/vol0 /mnt0 vxfs 2 yes -
[…]

